On the identification of hyperhydrated sodium chloride hydrates, stable at icy moon conditions

Author:

Journaux Baptiste1ORCID,Pakhomova Anna23,Collings Ines E.34,Petitgirard Sylvain5,Boffa Ballaran Tiziana6,Brown J. Michael1,Vance Steven D.7,Chariton Stella8,Prakapenka Vitali B.8ORCID,Huang Dongyang5ORCID,Ott Jason1,Glazyrin Konstantin2,Garbarino Gaston3,Comboni Davide3,Hanfland Michael3

Affiliation:

1. Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195

2. Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany

3. European Synchrotron Radiation Facility, 38000 Grenoble, France

4. Center for X-ray Analytics, Empa – Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland

5. Institute of Geochemistry and Petrology, ETH Zürich, 8092 Zürich, Switzerland

6. Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany

7. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

8. Center for Advanced Radiations Sources, University of Chicago, Chicago, IL 60637

Abstract

Sodium chloride is expected to be found on many of the surfaces of icy moons like Europa and Ganymede. However, spectral identification remains elusive as the known NaCl-bearing phases cannot match current observations, which require higher number of water of hydration. Working at relevant conditions for icy worlds, we report the characterization of three “hyperhydrated” sodium chloride (SC) hydrates, and refined two crystal structures [2NaCl·17H 2 O (SC8.5); NaCl·13H 2 O (SC13)]. We found that the dissociation of Na + and Cl ions within these crystal lattices allows for the high incorporation of water molecules and thus explain their hyperhydration. This finding suggests that a great diversity of hyperhydrated crystalline phases of common salts might be found at similar conditions. Thermodynamic constraints indicate that SC8.5 is stable at room pressure below 235 K, and it could be the most abundant NaCl hydrate on icy moon surfaces like Europa, Titan, Ganymede, Callisto, Enceladus, or Ceres. The finding of these hyperhydrated structures represents a major update to the H 2 O–NaCl phase diagram. These hyperhydrated structures provide an explanation for the mismatch between the remote observations of the surface of Europa and Ganymede and previously available data on NaCl solids. It also underlines the urgent need for mineralogical exploration and spectral data on hyperhydrates at relevant conditions to help future icy world exploration by space missions.

Funder

National Aeronautics and Space Administration

European Synchrotron Radiation Facility

ESRF

亥姆霍兹联合会致力 | Deutsches Elektronen-Synchrotron

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3