Distinctive transcriptomic and epigenomic signatures of bone marrow-derived myeloid cells and microglia in CNS autoimmunity

Author:

Manouchehri Navid1ORCID,Salinas Victor H.12ORCID,Hussain Rehana Z.1ORCID,Stüve Olaf123ORCID

Affiliation:

1. Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390

2. Neurology Section, Veterans Affairs North Texas Health Care System, Dallas, TX 75216

3. Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390

Abstract

In the context of autoimmunity, myeloid cells of the central nervous system (CNS) constitute an ontogenically heterogeneous population that includes yolk sac-derived microglia and infiltrating bone marrow-derived cells (BMC). We previously identified a myeloid cell subset in the brain and spinal cord that expresses the surface markers CD88 and CD317 and is associated with the onset and persistence of clinical disease in the murine model of the human CNS autoimmune disorder, experimental autoimmune encephalomyelitis (EAE). We employed an experimental platform utilizing single-cell transcriptomic and epigenomic profiling of bone marrow-chimeric mice to categorically distinguish BMC from microglia during CNS autoimmunity. Analysis of gene expression and chromosomal accessibility identified CD88 + CD317 + myeloid cells in the CNS of EAE mice as originating from BMC and microglia. Interestingly, each cell lineage exhibited overlapping and unique gene expression patterns and transcription factor motifs that allowed their segregation. Our observations will facilitate determining pathogenic contributions of BMC and microglia in CNS autoimmune disease. Ultimately, this agnostic characterization of myeloid cells will be required for devising disease stage-specific and tissue-specific interventions for CNS inflammatory and neurodegenerative disorders.

Funder

US Department of Veterans Affairs Biomedical Laboratory Research and Development

Merck KGaA

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3