Author:
Rao Antara,Chen Nuo,Kim Min Joo,Blumenfeld Jessica,Yip Oscar,Hao Yanxia,Liang Zherui,Nelson Maxine R.,Koutsodendris Nicole,Grone Brian,Ding Leo,Yoon Seo Yeon,Arriola Patrick,Huang Yadong
Abstract
SUMMARYDespite strong evidence supporting the involvement of both apolipoprotein E4 (APOE4) and microglia in Alzheimer’s Disease (AD) pathogenesis, the effects of microglia on neuronal APOE4-driven AD pathogenesis remain elusive. Here, we examined such effects utilizing microglial depletion in a chimeric model with human neurons in mouse hippocampus. Specifically, we transplanted homozygous APOE4, isogenic APOE3, and APOE-knockout (APOE-KO) induced pluripotent stem cell (iPSC)-derived human neurons into the hippocampus of human APOE3 or APOE4 knock-in mice, and depleted microglia in half the chimeric mice. We found that both neuronal APOE and microglial presence were important for the formation of Aβ and tau pathologies in an APOE isoform-dependent manner (APOE4 > APOE3). Single-cell RNA-sequencing analysis identified two pro-inflammatory microglial subtypes with high MHC-II gene expression that are enriched in chimeric mice with human APOE4 neuron transplants. These findings highlight the concerted roles of neuronal APOE, especially APOE4, and microglia in AD pathogenesis.HIGHLIGHTSTransplanted human APOE4 neurons generate Aβ and p-tau aggregates in APOE4-KI mouse hippocampus.Human neuronal APOE4 promotes the formation of dense-core Aβ plaques and p-tau aggregates.Microglia is required for human neuronal APOE4-driven formation of p-tau aggregates.scRNA-seq reveals enrichment of MHC-II microglia in mice with human APOE4 neuron transplants.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献