Surface coating by mechanofusion modulates bulk charging pathways and battery performance of Ni-rich layered cathodes

Author:

Hou Dong1ORCID,Han Jiaxiu2,Geng Chenxi3,Xu Zhengrui1,AlMarzooqi Modhi M.4,Zhang Jin5,Yang Zhijie1,Min Jungki1,Xiao Xianghui6,Borkiewicz Olaf7,Wiaderek Kamila7ORCID,Liu Yijin5ORCID,Zhao Kejie2ORCID,Lin Feng1ORCID

Affiliation:

1. Department of Chemistry, Virginia Tech, Blacksburg, VA 24061

2. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

3. Department of Physics and Atmosphere Science, Dalhousie University, Halifax, NS B3H 4R2, Canada

4. Chemical and Biomolecular Engineering Department, University of California, Los Angeles, CA 90095

5. Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, Menlo Park, CA 94025

6. National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973

7. Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439

Abstract

Ni-rich layered oxides as high-capacity battery cathodes suffer from degradation at high voltages. We utilize a dry surface modification method, mechanofusion (MF), to achieve enhanced battery stability. The simplicity, high yield, and flexibility make it cost-effective and highly attractive for processing at the industrial scale. The underlying mechanisms responsible for performance improvement are unveiled by a systematic study combining multiple probes, e.g., 3D nano-tomography, spectroscopic imaging, in situ synchrotron diffraction, and finite element analysis (FEA). MF affects the bulk crystallography by introducing partially disordered structure, microstrain, and local lattice variation. Furthermore, the crack initiation and propagation pattern during delithiation are regulated and the overall mechanical fracture is reduced after such surface coating. We validate that MF can alter the bulk charging pathways. Such a synergic effect between surface modification and bulk charge distribution is fundamentally important for designing next-generation battery cathode materials.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3