Computing geodesic paths encoding a curvature prior for curvilinear structure tracking

Author:

Chen Da1ORCID,Mirebeau Jean-Marie2,Shu Minglei1,Cohen Laurent D.3ORCID

Affiliation:

1. Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

2. Department of Mathematics, Centre Borelli, École normale supérieure Paris-Saclay, University Paris-Saclay, CNRS, Gif-sur-Yvette 91190, France

3. Centre de Recherche en Mathématiques de la Décision, University Paris Dauphine, Paris Sciences et Lettres CNRS, Paris 75016, France

Abstract

In this paper, we introduce an efficient method for computing curves minimizing a variant of the Euler–Mumford elastica energy, with fixed endpoints and tangents at these endpoints, where the bending energy is enhanced with a user-defined and data-driven scalar-valued term referred to as the curvature prior. In order to guarantee that the globally optimal curve is extracted, the proposed method involves the numerical computation of the viscosity solution to a specific static Hamilton–Jacobi–Bellman (HJB) partial differential equation (PDE). For that purpose, we derive the explicit Hamiltonian associated with this variant model equipped with a curvature prior, discretize the resulting HJB PDE using an adaptive finite difference scheme, and solve it in a single pass using a generalized fast-marching method. In addition, we also present a practical method for estimating the curvature prior values from image data, designed for the task of accurately tracking curvilinear structure centerlines. Numerical experiments on synthetic and real-image data illustrate the advantages of the considered variant of the elastica model with a prior curvature enhancement in complex scenarios where challenging geometric structures appear.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3