Structural definition of the lysine swing in Arabidopsis thaliana PDX1: Intermediate channeling facilitating vitamin B6 biosynthesis

Author:

Robinson Graham C.,Kaufmann Markus,Roux Céline,Fitzpatrick Teresa B.

Abstract

Vitamin B6 is indispensible for all organisms, notably as the coenzyme form pyridoxal 5′-phosphate. Plants make the compound de novo using a relatively simple pathway comprising pyridoxine synthase (PDX1) and pyridoxine glutaminase (PDX2). PDX1 is remarkable given its multifaceted synthetic ability to carry out isomerization, imine formation, ammonia addition, aldol-type condensation, cyclization, and aromatization, all in the absence of coenzymes or recruitment of specialized domains. Two active sites (P1 and P2) facilitate the plethora of reactions, but it is not known how the two are coordinated and, moreover, if intermediates are tunneled between active sites. Here we present X-ray structures of PDX1.3 from Arabidopsis thaliana, the overall architecture of which is a dodecamer of (β/α)8 barrels, similar to the majority of its homologs. An apoenzyme structure revealed that features around the P1 active site in PDX1.3 have adopted inward conformations consistent with a catalytically primed state and delineated a substrate accessible cavity above this active site, not noted in other reported structures. Comparison with the structure of PDX1.3 with an intermediate along the catalytic trajectory demonstrated that a lysine residue swings from the distinct P2 site to the P1 site at this stage of catalysis and is held in place by a molecular catch and pin, positioning it for transfer of serviced substrate back to P2. The study shows that a simple lysine swinging arm coordinates use of chemically disparate sites, dispensing with the need for additional factors, and provides an elegant example of solving complex chemistry to generate an essential metabolite.

Funder

Swiss National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3