Notes on the role of dynamic DNA methylation in mammalian development

Author:

Bestor Timothy H.,Edwards John R.,Boulard Mathieu

Abstract

It has been nearly 40 y since it was suggested that genomic methylation patterns could be transmitted via maintenance methylation during S phase and might play a role in the dynamic regulation of gene expression during development [Holliday R, Pugh JE (1975) Science 187(4173):226–232; Riggs AD (1975) Cytogenet Cell Genet 14(1):9–25]. This revolutionary proposal was justified by “... our almost complete ignorance of the mechanism for the unfolding of the genetic program during development” that prevailed at the time. Many correlations between transcriptional activation and demethylation have since been reported, but causation has not been demonstrated and to date there is no reasonable proof of the existence of a complex biochemical system that activates and represses genes via reversible DNA methylation. Such a system would supplement or replace the conserved web of transcription factors that regulate cellular differentiation in organisms that have unmethylated genomes (such as Caenorhaditis elegans and the Dipteran insects) and those that methylate their genomes. DNA methylation does have essential roles in irreversible promoter silencing, as in the monoallelic expression of imprinted genes, in the silencing of transposons, and in X chromosome inactivation in female mammals. Rather than reinforcing or replacing regulatory pathways that are conserved between organisms that have either methylated or unmethylated genomes, DNA methylation endows genomes with the ability to subject specific sequences to irreversible transcriptional silencing even in the presence of all of the factors required for their expression, an ability that is generally unavailable to organisms that have unmethylated genomes.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3