Abstract
Single-molecule experiments have been used with great success to explore the mechanochemical cycles of processive motor proteins such as kinesin-1, but it has proven difficult to apply these approaches to nonprocessive motors. Therefore, the mechanochemical cycle of kinesin-14 (ncd) is still under debate. Here, we use the readout from the collective activity of multiple motors to derive information about the mechanochemical cycle of individual ncd motors. In gliding motility assays we performed 3D imaging based on fluorescence interference contrast microscopy combined with nanometer tracking to simultaneously study the translation and rotation of microtubules. Microtubules gliding on ncd-coated surfaces rotated around their longitudinal axes in an [ATP]- and [ADP]-dependent manner. Combined with a simple mechanical model, these observations suggest that the working stroke of ncd consists of an initial small movement of its stalk in a lateral direction when ADP is released and a second, main component of the working stroke, in a longitudinal direction upon ATP binding.
Funder
Deutsche Forschungsgemeinschaft
EC | European Research Council
Javna Agencija za Raziskovalno Dejavnost RS
Publisher
Proceedings of the National Academy of Sciences
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献