Torques within and outside the human spindle balance twist at anaphase

Author:

Neahring Lila12ORCID,Cho Nathan H.13ORCID,He Yifei4ORCID,Liu Gaoxiang5ORCID,Fernandes Jonathan4ORCID,Rux Caleb J.16ORCID,Nakos Konstantinos78ORCID,Subramanian Radhika78ORCID,Upadhyayula Srigokul5910ORCID,Yildiz Ahmet511ORCID,Dumont Sophie12361012ORCID

Affiliation:

1. University of California San Francisco 1 Department of Bioengineering and Therapeutic Sciences, , San Francisco, CA, USA

2. University of California San Francisco 2 Developmental and Stem Cell Biology Graduate Program, , San Francisco, CA, USA

3. University of California San Francisco 3 Tetrad Graduate Program, , San Francisco, CA, USA

4. University of California Berkeley 4 Department of Chemistry, , Berkeley, CA, USA

5. University of California Berkeley 5 Department of Molecular and Cell Biology, , Berkeley, CA, USA

6. UC Berkeley/UC San Francisco Graduate Group in Bioengineering 6 , Berkeley, CA, USA

7. Massachusetts General Hospital 7 Department of Molecular Biology, , Boston, MA, USA

8. Harvard Medical School 8 Department of Genetics, , Boston, MA, USA

9. Lawrence Berkeley National Laboratory 9 Molecular Biophysics and Integrated Bioimaging Division, , Berkeley, CA, USA

10. Chan Zuckerberg Biohub 10 , San Francisco, CA, USA

11. University of California Berkeley 11 Physics Department, , Berkeley, CA, USA

12. University of California San Francisco 12 Department of Biochemistry and Biophysics, , San Francisco, CA, USA

Abstract

At each cell division, nanometer-scale motors and microtubules give rise to the micron-scale spindle. Many mitotic motors step helically around microtubules in vitro, and most are predicted to twist the spindle in a left-handed direction. However, the human spindle exhibits only slight global twist, raising the question of how these molecular torques are balanced. Here, we find that anaphase spindles in the epithelial cell line MCF10A have a high baseline twist, and we identify factors that both increase and decrease this twist. The midzone motors KIF4A and MKLP1 are together required for left-handed twist at anaphase, and we show that KIF4A generates left-handed torque in vitro. The actin cytoskeleton also contributes to left-handed twist, but dynein and its cortical recruitment factor LGN counteract it. Together, our work demonstrates that force generators regulate twist in opposite directions from both within and outside the spindle, preventing strong spindle twist during chromosome segregation.

Funder

National Institutes of Health

National Science Foundation

Philomathia Foundation

Chan Zuckerberg Initiative Imaging Scientist program

Fannie and John Hertz Foundation Fellowship

American Heart Association Predoctoral Fellowship

University of California, San Francisco

Publisher

Rockefeller University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3