Single-molecule fluorescence imaging and deep learning reveal highly heterogeneous aggregation of amyloid-β 42

Author:

Meng Fanjie1,Yoo Janghyun1,Chung Hoi Sung1ORCID

Affiliation:

1. Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892

Abstract

Significance There are various diseases caused by protein aggregation such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. From the diversity in the fibril structure, aggregation is expected to occur via heterogeneous pathways. However, characterization of this heterogeneity is extremely difficult because it requires following individual fibril formation in a mixture from early oligomerization stages. In this work, we investigated aggregation of the 42-residue isoform of amyloid β (Aβ42) using single-molecule fluorescence imaging and deep learning. We could track the growth of individual fibrils, which allows for a quantitative description of heterogeneous fibril formation and discovery of a new fibril nucleation mechanism. Further characterization of heterogeneity involving Aβ42 will be important for better understanding the disease mechanism.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3