Revealing the regulation of water dipole potential to aggregation of amyloid‐β 42 at chiral interface by surface‐enhanced infrared absorption spectroscopy

Author:

Zhu Manyu12ORCID,Li Shanshan12,Liu Qixin12,Zhang Yuqi12,Li Zihao12,Wang Yiran12,Wu Lie3,Jiang Xiue123

Affiliation:

1. State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China

2. School of Applied Chemistry and Engineering University of Science and Technology of China Hefei China

3. Research Center for Analytical Science College of Chemistry Nankai University Tianjin China

Abstract

AbstractSurface chirality plays an important role in determining the biological effect, but the molecular nature beyond stereoselectivity is still unknown. Herein, through surface‐enhanced infrared absorption spectroscopy, electrochemistry, and theoretical simulations, we found diasteromeric monolayers induced by assembled density on chiral gold nanofilm and identified the positive contribution of water dipole potential at chiral interface and their different interfacial interactions, which result in a difference both in the positive dipoles of interfacial water compensating the negative surface potential of the SAM and in the hindrance effect of interface dehydration, thereby regulating the interaction between amyloid‐β peptide (Aβ) and N‐isobutyryl‐cysteine (NIBC). Water on L‐NIBC interface which shows stronger positive dipole potential weakens the negative surface potential, but its local weak binding to the isopropyl group facilitates hydrophobic interaction between Aβ42 and L‐NIBC and resulted fiber aggregate. Conversely, electrostatic interaction between Aβ42 and D‐NIBC induces spherical oligomer. These findings provide new insight into molecular nature of chirality‐regulated biological effect.

Funder

National Key Research and Development Program of China

National Science Fund for Distinguished Young Scholars

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3