Digital computing through randomness and order in neural networks

Author:

Pitti Alexandre1ORCID,Weidmann Claudio1ORCID,Quoy Mathias12

Affiliation:

1. ETIS Laboratory, CY Cergy-Paris University, ENSEA, CNRS, UMR8051, Cergy, France

2. IPAL, CNRS, Singapore

Abstract

We propose that coding and decoding in the brain are achieved through digital computation using three principles: relative ordinal coding of inputs, random connections between neurons, and belief voting. Due to randomization and despite the coarseness of the relative codes, we show that these principles are sufficient for coding and decoding sequences with error-free reconstruction. In particular, the number of neurons needed grows linearly with the size of the input repertoire growing exponentially. We illustrate our model by reconstructing sequences with repertoires on the order of a billion items. From this, we derive the Shannon equations for the capacity limit to learn and transfer information in the neural population, which is then generalized to any type of neural network. Following the maximum entropy principle of efficient coding, we show that random connections serve to decorrelate redundant information in incoming signals, creating more compact codes for neurons and therefore, conveying a larger amount of information. Henceforth, despite the unreliability of the relative codes, few neurons become necessary to discriminate the original signal without error. Finally, we discuss the significance of this digital computation model regarding neurobiological findings in the brain and more generally with artificial intelligence algorithms, with a view toward a neural information theory and the design of digital neural networks.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference84 articles.

1. H. Barlow, “Possible principles underlying the transformation of sensory messages” in Sensory Communication, W. Rosenblith, Ed. (MIT Press, Cambridge, MA, 1961), pp. 217–234.

2. Information Theory and the Brain

3. Communication in Neuronal Networks

4. Sparse coding of sensory inputs

5. The neuronal encoding of information in the brain

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inherent trade-off in noisy neural communication with rank-order coding;Physical Review Research;2024-01-16

2. Digital computing through randomness and order in neural networks;Proceedings of the National Academy of Sciences;2022-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3