Eliminating unintended bias in personalized policies using bias-eliminating adapted trees (BEAT)

Author:

Ascarza Eva1ORCID,Israeli Ayelet1ORCID

Affiliation:

1. Marketing Unit, Harvard Business School, Harvard University, Boston, MA 02163

Abstract

Significance Decision makers now use algorithmic personalization for resource allocation decisions in many domains (e.g., medical treatments, hiring decisions, product recommendations, or dynamic pricing). An inherent risk of personalization is disproportionate targeting of individuals from certain protected groups. Existing solutions that firms use to avoid this bias often do not eliminate the bias and may even exacerbate it. We propose BEAT (bias-eliminating adapted trees) to ensure balanced allocation of resources across individuals—guaranteeing both group and individual fairness—while still leveraging the value of personalization. We validate our method using simulations as well as an online experiment with N = 3,146 participants. BEAT is easy to implement in practice, has desirable scalability properties, and is applicable to many personalization problems.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference34 articles.

1. Implementing Anti-Discrimination Policies in Statistical Profiling Models

2. Disparate Impact of Artificial Intelligence Bias in Ridehailing Economy's Price Discrimination Algorithms

3. G. Goh A. Cotter M. Gupta M. Friedlander Satisfying real-world goals with dataset constraints. arXiv [Preprint] (2017). https://arxiv.org/abs/1606.07558v2 (Accessed 6 July 2021).

4. A. Agarwal, A. Beygelzimer, M. Dudik, J. Langford, H. Wallach, “A reductions approach to fair classification” in Proceedings of the 35th International Conference on Machine Learning, J. Dy, A. Krause, Eds. (PMLR, 2018), vol. 80, pp. 60–69.

5. M. Feldman S. A. Friedler J. Moeller C. Scheidegger S. Venkatasubramanian “Certifying and removing disparate impact” in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Association for Computing Machinery New York NY 2015) pp. 259–268.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3