USP15 antagonizes CRL4CRBN-mediated ubiquitylation of glutamine synthetase and neosubstrates

Author:

Nguyen Thang VanORCID

Abstract

Targeted protein degradation by the ubiquitin–proteasome system represents a new strategy to destroy pathogenic proteins in human diseases, including cancer and neurodegenerative diseases. The immunomodulatory drugs (IMiDs) thalidomide, lenalidomide, and pomalidomide have revolutionized the treatment of patients with multiple myeloma (MM) and other hematologic malignancies, but almost all patients eventually develop resistance to IMiDs. CRBN, a substrate receptor of CUL4-RBX1-DDB1-CRBN (CRL4CRBN) E3 ubiquitin ligase, is a direct target for thalidomide teratogenicity and antitumor activity of IMiDs (now known as Cereblon E3 ligase modulators: CELMoDs). Despite recent advances in developing potent CELMoDs and CRBN-based proteolysis-targeting chimeras (PROTACs), many questions apart from clinical efficacy remain unanswered. CRBN is required for the action of IMiDs, but its protein expression levels do not correlate with intrinsic resistance to IMiDs in MM cells, suggesting other factors involved in regulating resistance to IMiDs. Our recent work revealed that the CRL4CRBN-p97 pathway is required for degradation of natural substrate glutamine synthetase (GS) and neosubstrates. Here, I show that USP15 is a key regulator of the CRL4CRBN-p97 pathway to control stability of GS and neosubstrates IKZF1, IKZF3, CK1-α, RNF166, GSPT1, and BRD4, all of which are crucial drug targets in different types of cancer. USP15 antagonizes ubiquitylation of CRL4CRBN target proteins, thereby preventing their degradation. Notably, USP15 is highly expressed in IMiD-resistant cells, and depletion of USP15 sensitizes these cells to lenalidomide. Inhibition of USP15 represents a valuable therapeutic opportunity to potentiate CELMoD and CRBN-based PROTAC therapies for the treatment of cancer.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3