Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas

Author:

Aleta Alberto1ORCID,Martín-Corral David234ORCID,Bakker Michiel A.5,Pastore y Piontti Ana6,Ajelli Marco67ORCID,Litvinova Maria7ORCID,Chinazzi Matteo6ORCID,Dean Natalie E.8,Halloran M. Elizabeth910ORCID,Longini Ira M.8,Pentland Alex5ORCID,Vespignani Alessandro16ORCID,Moreno Yamir11112ORCID,Moro Esteban235ORCID

Affiliation:

1. ISI Foundation, 10126 Turin, Italy

2. Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain

3. Grupo Interdisciplinar de Sistemas Complejos, Universidad Carlos III de Madrid, 28911 Leganés, Spain

4. Zensei Technologies S.L., 28010 Madrid, Spain

5. Connection Science, Institute for Data Science and Society, Massachusetts Institute of Technology, Cambridge, MA 02139

6. Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA 02115

7. Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN 47405

8. Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611

9. Biostatistics, Bioinformatics, and Epidemiology Program, Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109

10. Department of Biostatistics, University of Washington, Seattle, WA 98195

11. Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018 Zaragoza, Spain

12. Department of Theoretical Physics, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain

Abstract

Detailed characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission across different settings can help design less disruptive interventions. We used real-time, privacy-enhanced mobility data in the New York City, NY and Seattle, WA metropolitan areas to build a detailed agent-based model of SARS-CoV-2 infection to estimate the where, when, and magnitude of transmission events during the pandemic’s first wave. We estimate that only 18% of individuals produce most infections (80%), with about 10% of events that can be considered superspreading events (SSEs). Although mass gatherings present an important risk for SSEs, we estimate that the bulk of transmission occurred in smaller events in settings like workplaces, grocery stores, or food venues. The places most important for transmission change during the pandemic and are different across cities, signaling the large underlying behavioral component underneath them. Our modeling complements case studies and epidemiological data and indicates that real-time tracking of transmission events could help evaluate and define targeted mitigation policies.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

HHS | OASH | Office of Disease Prevention and Health Promotion

Ministerio de Economía y Competitividad

Banco Santander

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3