Atomic-scale probing of heterointerface phonon bridges in nitride semiconductor

Author:

Li Yue-Hui12ORCID,Qi Rui-Shi12,Shi Ruo-Chen12ORCID,Hu Jian-Nan3,Liu Zhe-Tong2,Sun Yuan-Wei12,Li Ming-Qiang2,Li Ning2,Song Can-Li3,Wang Lai4,Hao Zhi-Biao4,Luo Yi4,Xue Qi-Kun356,Ma Xu-Cun3,Gao Peng1278

Affiliation:

1. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China

2. Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China

3. State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China

4. Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

5. Beijing Academy of Quantum Information Sciences, Beijing 100193, China

6. Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China

7. Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China

8. Collaborative Innovation Centre of Quantum Matter, Beijing 100871, China

Abstract

Significance As high-power devices approach nanoscale, interface thermal conductance (ITC) becomes a bottleneck to govern the device performance, which is dominated by the interface phonons. In order to gain insights into engineering ITC, here we measure the local phonons across AlN/Si and AlN/Al interfaces by using atomically resolved vibrational electron energy-loss spectroscopy. We find that the dominant types of interface phonons for ITC are very different in these two systems and demonstrate the ability to correlate the measured interface phonons with ITC at atomic scale. Our study reveals the underlying mechanism of ITC and provides useful insights for thermal management in these practically important semiconductors.

Funder

National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3