Ctenophores are direct developers that reproduce continuously beginning very early after hatching

Author:

Edgar Allison1ORCID,Ponciano José Miguel2ORCID,Martindale Mark Q.12ORCID

Affiliation:

1. The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080

2. Department of Biology, University of Florida, Gainesville, FL 32611

Abstract

A substantial body of literature reports that ctenophores exhibit an apparently unique life history characterized by biphasic sexual reproduction, the first phase of which is called larval reproduction or dissogeny. Whether this strategy is plastically deployed or a typical part of these species’ life history was unknown. In contrast to previous reports, we show that the ctenophore Mnemiopsis leidyi does not have separate phases of early and adult reproduction, regardless of the morphological transition to what has been considered the adult form. Rather, these ctenophores begin to reproduce at a small body size and spawn continuously from this point onward under adequate environmental conditions. They do not display a gap in productivity for metamorphosis or other physiological transition at a certain body size. Furthermore, nutritional and environmental constraints on fecundity are similar in both small and large animals. Our results provide critical parameters for understanding resource partitioning between growth and reproduction in this taxon, with implications for management of this species in its invaded range. Finally, we report an observation of similarly small-size spawning in a beroid ctenophore, which is morphologically, ecologically, and phylogenetically distinct from other ctenophores reported to spawn at small sizes. We conclude that spawning at small body size should be considered as the default, on-time developmental trajectory rather than as precocious, stress-induced, or otherwise unusual for ctenophores. The ancestral ctenophore was likely a direct developer, consistent with the hypothesis that multiphasic life cycles were introduced after the divergence of the ctenophore lineage.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference58 articles.

1. Introduction

2. C. Nielsen, “Origin and diversity of marine larvae” in Evolutionary Ecology of Marine Invertebrate Larvae, T. Carrier, A. Reitzel, A. Heyland, Eds. (Oxford University Press, 2018), pp. 3–15.

3. Evolutionary Development of Marine Larvae

4. Who came first-larvae or adults? Origins of bilaterian metazoan larvae Life history modes and metazoan phylogeny;Sly B. J.;J. Dev. Biol.,2003

5. Evolutionary transcriptomics of metazoan biphasic life cycle supports a single intercalation origin of metazoan larvae

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3