Stochastic survival of the densest and mitochondrial DNA clonal expansion in aging

Author:

Insalata Ferdinando1ORCID,Hoitzing Hanne1,Aryaman Juvid1ORCID,Jones Nick S.12ORCID

Affiliation:

1. Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

2. EPSRC Centre for the Mathematics of Precision Healthcare, Imperial College London, London SW7 2AZ, United Kingdom

Abstract

The expansion of mitochondrial DNA molecules with deletions has been associated with aging, particularly in skeletal muscle fibers; its mechanism has remained unclear for three decades. Previous accounts have assigned a replicative advantage (RA) to mitochondrial DNA containing deletion mutations, but there is also evidence that cells can selectively remove defective mitochondrial DNA. Here we present a spatial model that, without an RA, but instead through a combination of enhanced density for mutants and noise, produces a wave of expanding mutations with speeds consistent with experimental data. A standard model based on RA yields waves that are too fast. We provide a formula that predicts that wave speed drops with copy number, consonant with experimental data. Crucially, our model yields traveling waves of mutants even if mutants are preferentially eliminated. Additionally, we predict that mutant loads observed in single-cell experiments can be produced by de novo mutation rates that are drastically lower than previously thought for neutral models. Given this exemplar of how spatial structure (multiple linked mtDNA populations), noise, and density affect muscle cell aging, we introduce the mechanism of stochastic survival of the densest (SSD), an alternative to RA, that may underpin other evolutionary phenomena.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3