Avoiding misleading estimates using mtDNA heteroplasmy statistics to study bottleneck size and selection

Author:

Giannakis Konstantinos1,Broz Amanda K2,Sloan Daniel B2,Johnston Iain G13ORCID

Affiliation:

1. Department of Mathematics, University of Bergen , 5007 Bergen , Norway

2. Department of Biology, Colorado State University , Fort Collins, CO 80523 , USA

3. Computational Biology Unit, University of Bergen , 5008 Bergen , Norway

Abstract

AbstractMitochondrial DNA heteroplasmy samples can shed light on vital developmental and genetic processes shaping mitochondrial DNA populations. The sample means and sample variance of a set of heteroplasmy observations are typically used both to estimate bottleneck sizes and to perform fits to the theoretical “Kimura” distribution in seeking evidence for mitochondrial DNA selection. However, each of these applications raises problems. Sample statistics do not generally provide optimal fits to the Kimura distribution and so can give misleading results in hypothesis testing, including false positive signals of selection. Using sample variance can give misleading results for bottleneck size estimates, particularly for small samples. These issues can and do lead to false positive results for mitochondrial DNA mechanisms—all published experimental datasets we re-analyzed, reported as displaying departures from the Kimura model, do not in fact give evidence for such departures. Here we outline a maximum likelihood approach that is simple to implement computationally and addresses all of these issues. We advocate the use of maximum likelihood fits and explicit hypothesis tests, not fits and Kolmogorov–Smirnov tests via summary statistics, for ongoing work with mitochondrial DNA heteroplasmy.

Funder

European Research Council

European Union’s Horizon 2020

NIH

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3