Affiliation:
1. Volen Center and Biology Department, Brandeis University, Waltham, MA 02454
Abstract
Neurons and neuronal circuits must maintain their function throughout the life of the organism despite changing environments. Previous theoretical and experimental work suggests that neurons monitor their activity using intracellular calcium concentrations to regulate their intrinsic excitability. Models with multiple sensors can distinguish among different patterns of activity, but previous work using models with multiple sensors produced instabilities that lead the models’ conductances to oscillate and then to grow without bound and diverge. We now introduce a nonlinear degradation term that explicitly prevents the maximal conductances to grow beyond a bound. We combine the sensors’ signals into a master feedback signal that can be used to modulate the timescale of conductance evolution. Effectively, this means that the negative feedback can be gated on and off according to how far the neuron is from its target. The modified model recovers from multiple perturbations. Interestingly, depolarizing the models to the same membrane potential with current injection or with simulated high extracellular
K
+
produces different changes in conductances, arguing that caution must be used in interpreting manipulations that serve as a proxy for increased neuronal activity. Finally, these models accrue traces of prior perturbations that are not visible in their control activity after perturbation but that shape their responses to subsequent perturbations. These cryptic or hidden changes may provide insight into disorders such as posttraumatic stress disorder that only become visible in response to specific perturbations.
Funder
HHS | NIH | National Institute of Neurological Disorders and Stroke
HHS | NIH | National Institute of Mental Health
Publisher
Proceedings of the National Academy of Sciences
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献