Network Stability from Activity-Dependent Regulation of Neuronal Conductances

Author:

Golowasch Jorge1,Casey Michael1,Abbott L. F.1,Marder Eve1

Affiliation:

1. Volen Center and Department of Biology, Brandeis University, Waltham, MA 02454-9110, U.S.A.

Abstract

Activity-dependent plasticity appears to play an important role in the modification of neurons and neural circuits that occurs during development and learning. Plasticity is also essential for the maintenance of stable patterns of activity in the face of variable environmental and internal conditions. Previous theoretical and experimental results suggest that neurons stabilize their activity by altering the number or characteristics of ion channels to regulate their intrinsic electrical properties. We present both experimental and modeling evidence to show that activity-dependent regulation of conductances, operating at the level of individual neurons, can also stabilize network activity. These results indicate that the stomatogastric ganglion of the crab can generate a characteristic rhythmic pattern of activity in two fundamentally different modes of operation. In one mode, the rhythm is strictly conditional on the presence of neuromodulatory afferents from adjacent ganglia. In the other, it is independent of neuromodulatory input but relies on newly developed intrinsic properties of the component neurons.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3