Affiliation:
1. School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
Abstract
Interpreting the outcome of chemistry experiments consistently is slow and frequently introduces unwanted hidden bias. This difficulty limits the scale of collectable data and often leads to exclusion of negative results, which severely limits progress in the field. What is needed is a way to standardize the discovery process and accelerate the interpretation of high-dimensional data aided by the expert chemist’s intuition. We demonstrate a digital Oracle that interprets chemical reactivity using probability. By carrying out >500 reactions covering a large space and retaining both the positive and negative results, the Oracle was able to rediscover eight historically important reactions including the aldol condensation, Buchwald–Hartwig amination, Heck, Mannich, Sonogashira, Suzuki, Wittig, and Wittig–Horner reactions. This paradigm for decoding reactivity validates and formalizes the expert chemist’s experience and intuition, providing a quantitative criterion of discovery scalable to all available experimental data.
Publisher
Proceedings of the National Academy of Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献