Perturbative diffraction methods resolve a conformational switch that facilitates a two-step enzymatic mechanism

Author:

Greisman Jack B.1ORCID,Dalton Kevin M.1ORCID,Brookner Dennis E.1ORCID,Klureza Margaret A.2ORCID,Sheehan Candice J.1,Kim In-Sik3,Henning Robert W.3ORCID,Russi Silvia4ORCID,Hekstra Doeke R.15ORCID

Affiliation:

1. Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138

2. Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138

3. BioCARS, Argonne National Laboratory, The University of Chicago, Lemont, IL 60439

4. Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025

5. School of Engineering & Applied Sciences, Harvard University, Allston, MA 02134

Abstract

Enzymes catalyze biochemical reactions through precise positioning of substrates, cofactors, and amino acids to modulate the transition-state free energy. However, the role of conformational dynamics remains poorly understood due to poor experimental access. This shortcoming is evident with Escherichia coli dihydrofolate reductase (DHFR), a model system for the role of protein dynamics in catalysis, for which it is unknown how the enzyme regulates the different active site environments required to facilitate proton and hydride transfer. Here, we describe ligand-, temperature-, and electric-field-based perturbations during X-ray diffraction experiments to map the conformational dynamics of the Michaelis complex of DHFR. We resolve coupled global and local motions and find that these motions are engaged by the protonated substrate to promote efficient catalysis. This result suggests a fundamental design principle for multistep enzymes in which pre-existing dynamics enable intermediates to drive rapid electrostatic reorganization to facilitate subsequent chemical steps.

Funder

Kinship Foundation

New York Community Trust

HHS | National Institutes of Health

National Science Foundation

Burroughs Wellcome Fund

NSF-Simons Center for Mathematical and Statistical Analysis of Biology

Publisher

Proceedings of the National Academy of Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3