Statistical Coupling Analysis Predicts Correlated Motions in Dihydrofolate Reductase

Author:

Kalmer Thomas L.ORCID,Ancajas Christine Mae F.ORCID,Cohen Cameron I.ORCID,McDaniel Jade M.ORCID,Oyedele Abiodun S.ORCID,Thirman Hannah L.ORCID,Walker Allison S.ORCID

Abstract

AbstractThe role of dynamics in enzymatic function is a highly debated topic. Dihydrofolate reductase (DHFR), due to its universality and the depth with which it has been studied, is a model system in this debate. Myriad previous works have identified networks of residues in positions near to and remote from the active site that are involved in dynamics and others that are important for catalysis. For example, specific mutations on the Met20 loop inE. coliDHFR (N23PP/S148A) are known to disrupt millisecond-timescale motions and reduce catalytic activity. However, how and if networks of dynamically coupled residues influence the evolution of DHFR is still an unanswered question. In this study, we first identify, by statistical coupling analysis and molecular dynamic simulations, a network of coevolving residues, which possess increased correlated motions. We then go on to show that allosteric communication in this network is selectively knocked down in N23PP/S148A mutantE. coliDHFR. Finally, we identify two sites in the human DHFR sector which may accommodate the Met20 loop double proline mutation while preserving dynamics. These findings strongly implicate protein dynamics as a driving force for evolution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3