A useful formula for periodic Jacobi matrices on trees

Author:

Banks Jess1,Breuer Jonathan2ORCID,Garza-Vargas Jorge3ORCID,Seelig Eyal2,Simon Barry45ORCID

Affiliation:

1. Department of Mathematics, University of California, Berkeley, CA 94720

2. Department of Mathematics, Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

3. Division of Engineering and Applied Science, Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125

4. Division of Physics, Mathematics and Astronomy, Department of Mathematics, California Institute of Technology, Pasadena, CA 91125

5. Division of Physics, Mathematics and Astronomy, Department of Physics, California Institute of Technology, Pasadena, CA 91125

Abstract

We introduce a function of the density of states for periodic Jacobi matrices on trees and prove a useful formula for it in terms of entries of the resolvent of the matrix and its “half-tree” restrictions. This formula is closely related to the one-dimensional Thouless formula and associates a natural phase with points in the bands. This allows streamlined proofs of the gap labeling and Aomoto index theorems. We give a complete proof of gap labeling and sketch the proof of the Aomoto index theorem. We also prove a version of this formula for the Anderson model on trees.

Funder

United States - Israel Binational Science Foundation

NSF | MPS | Division of Mathematical Sciences

Publisher

Proceedings of the National Academy of Sciences

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3