Point Spectrum of Periodic Operators on Universal Covering Trees

Author:

Banks Jess1,Garza-Vargas Jorge1,Mukherjee Satyaki1

Affiliation:

1. Department of Mathematics, University of California–Berkeley, Berkeley, USA

Abstract

Abstract For any multi-graph $G$ with edge weights and vertex potential, and its universal covering tree ${\mathcal{T}}$, we completely characterize the point spectrum of operators $A_{{\mathcal{T}}}$ on ${\mathcal{T}}$ arising as pull-backs of local, self-adjoint operators $A_{G}$ on $G$. This builds on work of Aomoto, and includes an alternative proof of the necessary condition for point spectrum derived in [ 5]. Our result gives a finite time algorithm to compute the point spectrum of $A_{{\mathcal{T}}}$ from the graph $G$, and additionally allows us to show that this point spectrum is itself contained in the spectrum of $A_{G}$. Finally, we prove that typical pull-back operators have a spectral delocalization property: the set of edge weight and vertex potential parameters of $A_{G}$ giving rise to $A_{{\mathcal{T}}}$ with purely absolutely continuous spectrum is open, and its complement has large codimension.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference24 articles.

1. Delocalization of Schrödinger eigenfunctions;Anantharaman;Proc. ICM Rio de Jan,2018

2. Absolutely continuous spectrum for quantum trees;Anantharaman,2020

3. Quantum ergodicity on graphs: from spectral to spatial delocalization;Anantharaman;Ann. of Math.,2019

4. The non-backtracking spectrum of the universal cover of a graph;Angel;Trans. Amer. Math. Soc.,2015

5. Point spectrum on a quasihomogeneous tree;Aomoto;Pacific J. Math.,1991

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A useful formula for periodic Jacobi matrices on trees;Proceedings of the National Academy of Sciences;2024-05-31

2. Universality of free random variables: Atoms for non-commutative rational functions;Advances in Mathematics;2024-05

3. Algebraic properties of the Fermi variety for periodic graph operators;Journal of Functional Analysis;2024-02

4. Flat bands of periodic graphs;Journal of Mathematical Physics;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3