Spatial configuration of Fe–Co dual-sites boosting catalytic intermediates coupling toward oxygen evolution reaction

Author:

Zhang Taiyan1,Jiang Jingjing2,Sun Wenming1ORCID,Gong Shuyan1,Liu Xiangwen2,Tian Yang1ORCID,Wang Dingsheng3ORCID

Affiliation:

1. Analytical Instrumentation Centre, Department of Chemistry, Capital Normal University, Beijing 100048, People’s Republic of China

2. Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100094, People’s Republic of China

3. Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China

Abstract

Oxygen evolution reaction (OER) is the pivotal obstacle of water splitting for hydrogen production. Dual-sites catalysts (DSCs) are considered exceeding single-site catalysts due to the preternatural synergetic effects of two metals in OER. However, appointing the specific spatial configuration of dual-sites toward more efficient catalysis still remains a challenge. Herein, we constructed two configurations of Fe–Co dual-sites: stereo Fe–Co sites (stereo-Fe-Co DSC) and planar Fe–Co sites (planar-Fe-Co DSC). Remarkably, the planar-Fe-Co DSC has excellent OER performance superior to stereo-Fe-Co DSC. DFT calculations and experiments including isotope differential electrochemical mass spectrometry, in situ infrared spectroscopy, and in situ Raman reveal the *O intermediates can be directly coupled to form *O–O* rather than *OOH by both the DSCs, which could overcome the limitation of four electron transfer steps in OER. Especially, the proper Fe–Co distance and steric direction of the planar-Fe-Co benefit the cooperation of dual sites to dehydrogenate intermediates into *O–O* than stereo-Fe-Co in the rate-determining step. This work provides valuable insights and support for further research and development of OER dual-site catalysts.

Funder

MOST | National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3