Highly Efficient CoFeP Nanoparticle Catalysts for Superior Oxygen Evolution Reaction Performance

Author:

Meena Abhishek1,Ahmed Abu Talha Aqueel1ORCID,Singh Aditya Narayan2ORCID,Sree Vijaya Gopalan3,Im Hyunsik1ORCID,Cho Sangeun1ORCID

Affiliation:

1. Division of System Semiconductor, College of AI Convergence, Dongguk University, Seoul 04620, Republic of Korea

2. Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea

3. Department of Physics, Dongguk University, Seoul 04620, Republic of Korea

Abstract

Developing effective and long-lasting electrocatalysts for oxygen evolution reaction (OER) is critical for increasing sustainable hydrogen production. This paper describes the production and characterization of CoFeP nanoparticles (CFP NPs) as high-performance electrocatalysts for OER. The CFP NPs were produced using a simple hydrothermal technique followed by phosphorization, yielding an amorphous/crystalline composite structure with improved electrochemical characteristics. Our results reveal that CFP NPs have a surprisingly low overpotential of 284 mV at a current density of 100 mA cm−2, greatly exceeding the precursor CoFe oxide/hydroxide (CFO NPs) and the commercial RuO2 catalyst. Furthermore, CFP NPs demonstrate exceptional stability, retaining a constant performance after 70 h of continuous operation. Post-OER characterization analysis revealed transformations in the catalyst, including the formation of cobalt–iron oxides/oxyhydroxides. Despite these changes, CFP NPs showed superior long-term stability compared to native metal oxides/oxyhydroxides, likely due to enhanced surface roughness and increased active sites. This study proposes a viable strategy for designing low-cost, non-precious metal-based OER catalysts, which will help advance sustainable energy technology.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3