Hydrogen isotope fractionation is controlled by CO 2 in coccolithophore lipids

Author:

Torres-Romero Ismael1ORCID,Zhang Hongrui1ORCID,Wijker Reto S.1,Clark Alexander J.1ORCID,McLeod Rachel E.1ORCID,Jaggi Madalina1ORCID,Stoll Heather M.1ORCID

Affiliation:

1. Climate Geology, Department of Earth Sciences, ETH Zürich, Zurich 8092, Switzerland

Abstract

Hydrogen isotope ratios (δ 2 H) represent an important natural tracer of metabolic processes, but quantitative models of processes controlling H-fractionation in aquatic photosynthetic organisms are lacking. Here, we elucidate the underlying physiological controls of 2 H/ 1 H fractionation in algal lipids by systematically manipulating temperature, light, and CO 2 (aq) in continuous cultures of the haptophyte Gephyrocapsa oceanica . We analyze the hydrogen isotope fractionation in alkenones (α alkenone ), a class of acyl lipids specific to this species and other haptophyte algae. We find a strong decrease in the α alkenone with increasing CO 2 (aq) and confirm α alkenone correlates with temperature and light. Based on the known biosynthesis pathways, we develop a cellular model of the δ 2 H of algal acyl lipids to evaluate processes contributing to these controls on fractionation. Simulations show that longer residence times of NADPH in the chloroplast favor a greater exchange of NADPH with 2 H-richer intracellular water, increasing α alkenone . Higher chloroplast CO 2 (aq) and temperature shorten NADPH residence time by enhancing the carbon fixation and lipid synthesis rates. The inverse correlation of α alkenone to CO 2 (aq) in our cultures suggests that carbon concentrating mechanisms (CCM) do not achieve a constant saturation of CO 2 at the Rubisco site, but rather that chloroplast CO 2 varies with external CO 2 (aq). The pervasive inverse correlation of α alkenone with CO 2 (aq) in the modern and preindustrial ocean also suggests that natural populations may not attain a constant saturation of Rubisco with the CCM. Rather than reconstructing growth water, α alkenone may be a powerful tool to elucidate the carbon limitation of photosynthesis.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Eidgenössische Technische Hochschule Zürich

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3