Discovering multiscale and self-similar structure with data-driven wavelets

Author:

Floryan DanielORCID,Graham Michael D.ORCID

Abstract

Many materials, processes, and structures in science and engineering have important features at multiple scales of time and/or space; examples include biological tissues, active matter, oceans, networks, and images. Explicitly extracting, describing, and defining such features are difficult tasks, at least in part because each system has a unique set of features. Here, we introduce an analysis method that, given a set of observations, discovers an energetic hierarchy of structures localized in scale and space. We call the resulting basis vectors a “data-driven wavelet decomposition.” We show that this decomposition reflects the inherent structure of the dataset it acts on, whether it has no structure, structure dominated by a single scale, or structure on a hierarchy of scales. In particular, when applied to turbulence—a high-dimensional, nonlinear, multiscale process—the method reveals self-similar structure over a wide range of spatial scales, providing direct, model-free evidence for a century-old phenomenological picture of turbulence. This approach is a starting point for the characterization of localized hierarchical structures in multiscale systems, which we may think of as the building blocks of these systems.

Funder

DOD | USAF | AFMC | Air Force Office of Scientific Research

DOD | United States Navy | Office of Naval Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference41 articles.

1. W. K. M. Lau , D. E. Waliser , Intraseasonal Variability in the Atmosphere-Ocean Climate System (Springer Science & Business Media, 2011).

2. Multiscale modeling of coastal, shelf, and global ocean dynamics;Lermusiaux;Ocean Dyn.,2013

3. Link communities reveal multiscale complexity in networks

4. S. Bradshaw , P. N. Howard , “Challenging truth and trust: A global inventory of organized social media manipulation” (Computational Propaganda Research Project, University of Oxford, Oxford, 2018).

5. Attached eddy model of wall turbulence;Marusic;Annu. Rev. Fluid Mech.,2019

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3