DeepTFactor: A deep learning-based tool for the prediction of transcription factors

Author:

Kim Gi BaeORCID,Gao Ye,Palsson Bernhard O.ORCID,Lee Sang YupORCID

Abstract

A transcription factor (TF) is a sequence-specific DNA-binding protein that modulates the transcription of a set of particular genes, and thus regulates gene expression in the cell. TFs have commonly been predicted by analyzing sequence homology with the DNA-binding domains of TFs already characterized. Thus, TFs that do not show homologies with the reported ones are difficult to predict. Here we report the development of a deep learning-based tool, DeepTFactor, that predicts whether a protein in question is a TF. DeepTFactor uses a convolutional neural network to extract features of a protein. It showed high performance in predicting TFs of both eukaryotic and prokaryotic origins, resulting in F1 scores of 0.8154 and 0.8000, respectively. Analysis of the gradients of prediction score with respect to input suggested that DeepTFactor detects DNA-binding domains and other latent features for TF prediction. DeepTFactor predicted 332 candidate TFs in Escherichia coli K-12 MG1655. Among them, 84 candidate TFs belong to the y-ome, which is a collection of genes that lack experimental evidence of function. We experimentally validated the results of DeepTFactor prediction by further characterizing genome-wide binding sites of three predicted TFs, YqhC, YiaU, and YahB. Furthermore, we made available the list of 4,674,808 TFs predicted from 73,873,012 protein sequences in 48,346 genomes. DeepTFactor will serve as a useful tool for predicting TFs, which is necessary for understanding the regulatory systems of organisms of interest. We provide DeepTFactor as a stand-alone program, available at https://bitbucket.org/kaistsystemsbiology/deeptfactor.

Funder

Ministry of Science and ICT

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3