The combination approach of SVM and ECOC for powerful identification and classification of transcription factor
-
Published:2008-06-16
Issue:1
Volume:9
Page:
-
ISSN:1471-2105
-
Container-title:BMC Bioinformatics
-
language:en
-
Short-container-title:BMC Bioinformatics
Author:
Zheng Guangyong,Qian Ziliang,Yang Qing,Wei Chaochun,Xie Lu,Zhu Yangyong,Li Yixue
Abstract
Abstract
Background
Transcription factors (TFs) are core functional proteins which play important roles in gene expression control, and they are key factors for gene regulation network construction. Traditionally, they were identified and classified through experimental approaches. In order to save time and reduce costs, many computational methods have been developed to identify TFs from new proteins and to classify the resulted TFs. Though these methods have facilitated screening of TFs to some extent, low accuracy is still a common problem. With the fast growing number of new proteins, more precise algorithms for identifying TFs from new proteins and classifying the consequent TFs are in a high demand.
Results
The support vector machine (SVM) algorithm was utilized to construct an automatic detector for TF identification, where protein domains and functional sites were employed as feature vectors. Error-correcting output coding (ECOC) algorithm, which was originated from information and communication engineering fields, was introduced to combine with support vector machine (SVM) methodology for TF classification. The overall success rates of identification and classification achieved 88.22% and 97.83% respectively. Finally, a web site was constructed to let users access our tools (see Availability and requirements section for URL).
Conclusion
The SVM method was a valid and stable means for TFs identification with protein domains and functional sites as feature vectors. Error-correcting output coding (ECOC) algorithm is a powerful method for multi-class classification problem. When combined with SVM method, it can remarkably increase the accuracy of TF classification using protein domains and functional sites as feature vectors. In addition, our work implied that ECOC algorithm may succeed in a broad range of applications in biological data mining.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference40 articles.
1. Duncan SA, Navas MA, Dufort D, Rossant J, Stoffel M: Regulation of a transcription factor network required for differentiation and metabolism. Science 1998, 281: 692–695. 10.1126/science.281.5377.692 2. Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science 2003, 299: 1057–1061. 10.1126/science.1079490 3. Vaughan PS, Aziz F, van Wijnen AJ, Wu S, Harada H, Taniguchi T, Soprano KJ, Stein JL, Stein GS: Activation of a cell-cycle-regulated histone gene by the oncogenic transcription factor IRF-2. Nature 1995, 377: 362–365. 10.1038/377362a0 4. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV, Kloos DU, Land S, Lewicki-Potapov B, Michael H, Munch R, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S, Wingender E: TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 2003, 31: 374–378. 10.1093/nar/gkg108 5. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier P, Lewicki-Potapov B, Saxel H, Kel AE, Wingender E: TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 2006, 34: D108–10. 10.1093/nar/gkj143
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|