Asteroid break-ups and meteorite delivery to Earth the past 500 million years

Author:

Terfelt Fredrik,Schmitz Birger

Abstract

The meteoritic material falling on Earth is believed to derive from large break-up or cratering events in the asteroid belt. The flux of extraterrestrial material would then vary in accordance with the timing of such asteroid family-forming events. In order to validate this, we investigated marine sediments representing 15 time-windows in the Phanerozoic for content of micrometeoritic relict chrome-spinel grains (>32 μm). We compare these data with the timing of the 15 largest break-up events involving chrome-spinel–bearing asteroids (S- and V-types). Unexpectedly, our Phanerozoic time windows show a stable flux dominated by ordinary chondrites similar to today’s flux. Only in the mid-Ordovician, in connection with the break-up of the L-chondrite parent body, do we observe an anomalous micrometeorite regime with a two to three orders-of-magnitude increase in the flux of L-chondritic chrome-spinel grains to Earth. This corresponds to a one order-of-magnitude excess in the number of impact craters in the mid-Ordovician following the L-chondrite break-up, the only resolvable peak in Phanerozoic cratering rates indicative of an asteroid shower. We argue that meteorites and small (<1-km-sized) asteroids impacting Earth mainly sample a very small region of orbital space in the asteroid belt. This selectiveness has been remarkably stable over the past 500 Ma.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3