Femtosecond covariance spectroscopy

Author:

Tollerud Jonathan Owen,Sparapassi Giorgia,Montanaro Angela,Asban Shahaf,Glerean Filippo,Giusti Francesca,Marciniak Alexandre,Kourousias George,Billè Fulvio,Cilento Federico,Mukamel ShaulORCID,Fausti Daniele

Abstract

The success of nonlinear optics relies largely on pulse-to-pulse consistency. In contrast, covariance-based techniques used in photoionization electron spectroscopy and mass spectrometry have shown that a wealth of information can be extracted from noise that is lost when averaging multiple measurements. Here, we apply covariance-based detection to nonlinear optical spectroscopy, and show that noise in a femtosecond laser is not necessarily a liability to be mitigated, but can act as a unique and powerful asset. As a proof of principle we apply this approach to the process of stimulated Raman scattering in α-quartz. Our results demonstrate how nonlinear processes in the sample can encode correlations between the spectral components of ultrashort pulses with uncorrelated stochastic fluctuations. This in turn provides richer information compared with the standard nonlinear optics techniques that are based on averages over many repetitions with well-behaved laser pulses. These proof-of-principle results suggest that covariance-based nonlinear spectroscopy will improve the applicability of fs nonlinear spectroscopy in wavelength ranges where stable, transform-limited pulses are not available, such as X-ray free-electron lasers which naturally have spectrally noisy pulses ideally suited for this approach.

Funder

EC | FP7 | FP7 Ideas: European Research Council

National Science Foundation

U.S. Department of Energy

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3