Structural insights into FTO’s catalytic mechanism for the demethylation of multiple RNA substrates

Author:

Zhang Xiao,Wei Lian-Huan,Wang Yuxin,Xiao Yu,Liu Jun,Zhang Wei,Yan Ning,Amu Gubu,Tang Xinjing,Zhang Liang,Jia Guifang

Abstract

FTO demethylates internal N6-methyladenosine (m6A) and N6,2′-O-dimethyladenosine (m6Am; at the cap +1 position) in mRNA, m6A and m6Am in snRNA, and N1-methyladenosine (m1A) in tRNA in vivo, and in vitro evidence supports that it can also demethylate N6-methyldeoxyadenosine (6mA), 3-methylthymine (3mT), and 3-methyluracil (m3U). However, it remains unclear how FTO variously recognizes and catalyzes these diverse substrates. Here we demonstrate—in vitro and in vivo—that FTO has extensive demethylation enzymatic activity on both internal m6A and cap m6Am. Considering that 6mA, m6A, and m6Am all share the same nucleobase, we present a crystal structure of human FTO bound to 6mA-modified ssDNA, revealing the molecular basis of the catalytic demethylation of FTO toward multiple RNA substrates. We discovered that (i) N6-methyladenine is the most favorable nucleobase substrate of FTO, (ii) FTO displays the same demethylation activity toward internal m6A and m6Am in the same RNA sequence, suggesting that the substrate specificity of FTO primarily results from the interaction of residues in the catalytic pocket with the nucleobase (rather than the ribose ring), and (iii) the sequence and the tertiary structure of RNA can affect the catalytic activity of FTO. Our findings provide a structural basis for understanding the catalytic mechanism through which FTO demethylates its multiple substrates and pave the way forward for the structure-guided design of selective chemicals for functional studies and potential therapeutic applications.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 176 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3