Author:
Terekhov Stanislav S.,Smirnov Ivan V.,Stepanova Anastasiya V.,Bobik Tatyana V.,Mokrushina Yuliana A.,Ponomarenko Natalia A.,Belogurov Alexey A.,Rubtsova Maria P.,Kartseva Olga V.,Gomzikova Marina O.,Moskovtsev Alexey A.,Bukatin Anton S.,Dubina Michael V.,Kostryukova Elena S.,Babenko Vladislav V.,Vakhitova Maria T.,Manolov Alexander I.,Malakhova Maja V.,Kornienko Maria A.,Tyakht Alexander V.,Vanyushkina Anna A.,Ilina Elena N.,Masson Patrick,Gabibov Alexander G.,Altman Sidney
Abstract
Ultrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double water-in-oil-in-water emulsion (MDE). Biocompatible MDE enables in-droplet cultivation of different living species. The combination of droplet-generating machinery with FACS followed by next-generation sequencing and liquid chromatography-mass spectrometry analysis of the secretomes of encapsulated organisms yielded detailed genotype/phenotype descriptions. This platform was probed with uHTS for biocatalysts anchored to yeast with enrichment close to the theoretically calculated limit and cell-to-cell interactions. MDE–FACS allowed the identification of human butyrylcholinesterase mutants that undergo self-reactivation after inhibition by the organophosphorus agent paraoxon. The versatility of the platform allowed the identification of bacteria, including slow-growing oral microbiota species that suppress the growth of a common pathogen,Staphylococcus aureus, and predicted which genera were associated with inhibitory activity.
Funder
Ministry of Education and Science of the Russian Federation
Publisher
Proceedings of the National Academy of Sciences
Cited by
182 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献