Cholinergic shaping of neural correlations

Author:

Minces Victor,Pinto Lucas,Dan Yang,Chiba Andrea A.

Abstract

A primary function of the brain is to form representations of the sensory world. Its capacity to do so depends on the relationship between signal correlations, associated with neuronal receptive fields, and noise correlations, associated with neuronal response variability. It was recently shown that the behavioral relevance of sensory stimuli can modify the relationship between signal and noise correlations, presumably increasing the encoding capacity of the brain. In this work, we use data from the visual cortex of the awake mouse watching naturalistic stimuli and show that a similar modification is observed under heightened cholinergic modulation. Increasing cholinergic levels in the cortex through optogenetic stimulation of basal forebrain cholinergic neurons decreases the dependency that is commonly observed between signal and noise correlations. Simulations of correlated neural networks with realistic firing statistics indicate that this change in the correlation structure increases the encoding capacity of the network.

Funder

NSF | Science of Learning Centers

HHS | NIH | National Eye Institute

National Science Foundation

HHS | NIH | National Institute of Neurological Disorders and Stroke

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3