Abstract
G proteins are activated when they associate with G protein-coupled receptors (GPCRs), often in response to agonist-mediated receptor activation. It is generally thought that agonist-induced receptor-G protein association necessarily promotes G protein activation and, conversely, that activated GPCRs do not interact with G proteins that they do not activate. Here we show that GPCRs can form agonist-dependent complexes with G proteins that they do not activate. Using cell-based bioluminescence resonance energy transfer (BRET) and luminescence assays we find that vasopressin V2receptors (V2R) associate with both Gsand G12heterotrimers when stimulated with the agonist arginine vasopressin (AVP). However, unlike V2R-Gscomplexes, V2R-G12complexes are not destabilized by guanine nucleotides and do not promote G12activation. Activating V2R does not lead to signaling responses downstream of G12activation, but instead inhibits basal G12-mediated signaling, presumably by sequestering G12heterotrimers. Overexpressing G12inhibits G protein receptor kinase (GRK) and arrestin recruitment to V2R and receptor internalization. Formyl peptide (FPR1 and FPR2) and Smoothened (Smo) receptors also form complexes with G12that are insensitive to nucleotides, suggesting that unproductive GPCR-G12complexes are not unique to V2R. These results indicate that agonist-dependent receptor-G protein association does not always lead to G protein activation and may in fact inhibit G protein activation.
Funder
HHS | NIH | National Institute of General Medical Sciences
HHS | NIH | National Institute of Mental Health
Japan Agency for Medical Research and Development
MEXT | Japan Society for the Promotion of Science
Svenska Sällskapet för Medicinsk Forskning
Gouvernement du Canada | Canadian Institutes of Health Research
Publisher
Proceedings of the National Academy of Sciences
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献