Point process temporal structure characterizes electrodermal activity

Author:

Subramanian SandyaORCID,Barbieri Riccardo,Brown Emery N.

Abstract

Electrodermal activity (EDA) is a direct readout of the body’s sympathetic nervous system measured as sweat-induced changes in the skin’s electrical conductance. There is growing interest in using EDA to track physiological conditions such as stress levels, sleep quality, and emotional states. Standardized EDA data analysis methods are readily available. However, none considers an established physiological feature of EDA. The sympathetically mediated pulsatile changes in skin sweat measured as EDA resemble an integrate-and-fire process. An integrate-and-fire process modeled as a Gaussian random walk with drift diffusion yields an inverse Gaussian model as the interpulse interval distribution. Therefore, we chose an inverse Gaussian model as our principal probability model to characterize EDA interpulse interval distributions. To analyze deviations from the inverse Gaussian model, we considered a broader model set: the generalized inverse Gaussian distribution, which includes the inverse Gaussian and other diffusion and nondiffusion models; the lognormal distribution which has heavier tails (lower settling rates) than the inverse Gaussian; and the gamma and exponential probability distributions which have lighter tails (higher settling rates) than the inverse Gaussian. To assess the validity of these probability models we recorded and analyzed EDA measurements in 11 healthy volunteers during 1 h of quiet wakefulness. Each of the 11 time series was accurately described by an inverse Gaussian model measured by Kolmogorov–Smirnov measures. Our broader model set offered a useful framework to enhance further statistical descriptions of EDA. Our findings establish that a physiologically based inverse Gaussian probability model provides a parsimonious and accurate description of EDA.

Funder

National Science Foundation

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3