Machine learning-enabled detection of attention-deficit/hyperactivity disorder with multimodal physiological data: a case-control study

Author:

Andrikopoulos Dimitrios,Vassiliou Georgia,Fatouros Panagiotis,Tsirmpas Charalampos,Pehlivanidis Artemios,Papageorgiou Charalabos

Abstract

Abstract Background Attention-Deficit/Hyperactivity Disorder (ADHD) is a multifaceted neurodevelopmental psychiatric condition that typically emerges during childhood but often persists into adulthood, significantly impacting individuals’ functioning, relationships, productivity, and overall quality of life. However, the current diagnostic process exhibits limitations that can significantly affect its overall effectiveness. Notably, its face-to-face and time-consuming nature, coupled with the reliance on subjective recall of historical information and clinician subjectivity, stand out as key challenges. To address these limitations, objective measures such as neuropsychological evaluations, imaging techniques and physiological monitoring of the Autonomic Nervous System functioning, have been explored. Methods The main aim of this study was to investigate whether physiological data (i.e., Electrodermal Activity, Heart Rate Variability, and Skin Temperature) can serve as meaningful indicators of ADHD, evaluating its utility in distinguishing adult ADHD patients. This observational, case-control study included a total of 76 adult participants (32 ADHD patients and 44 healthy controls) who underwent a series of Stroop tests, while their physiological data was passively collected using a multi-sensor wearable device. Univariate feature analysis was employed to identify the tests that triggered significant signal responses, while the Informative k-Nearest Neighbors (KNN) algorithm was used to filter out less informative data points. Finally, a machine-learning decision pipeline incorporating various classification algorithms, including Logistic Regression, KNN, Random Forests, and Support Vector Machines (SVM), was utilized for ADHD patient detection. Results Results indicate that the SVM-based model yielded the optimal performance, achieving 81.6% accuracy, maintaining a balance between the experimental and control groups, with sensitivity and specificity of 81.4% and 81.9%, respectively. Additionally, integration of data from all physiological signals yielded the best results, suggesting that each modality captures unique aspects of ADHD. Conclusions This study underscores the potential of physiological signals as valuable diagnostic indicators of adult ADHD. For the first time, to the best of our knowledge, our findings demonstrate that multimodal physiological data collected via wearable devices can complement traditional diagnostic approaches. Further research is warranted to explore the clinical applications and long-term implications of utilizing physiological markers in ADHD diagnosis and management.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3