Extraordinary flight performance of the smallest beetles

Author:

Farisenkov Sergey E.ORCID,Lapina Nadejda A.ORCID,Petrov Pyotr N.ORCID,Polilov Alexey A.ORCID

Abstract

Size is a key to locomotion. In insects, miniaturization leads to fundamental changes in wing structure and kinematics, making the study of flight in the smallest species important for basic biology and physics, and, potentially, for applied disciplines. However, the flight efficiency of miniature insects has never been studied, and their speed and maneuverability have remained unknown. We report a comparative study of speeds and accelerations in the smallest free-living insects, featherwing beetles (Coleoptera: Ptiliidae), and in larger representatives of related groups of Staphylinoidea. Our results show that the average and maximum flight speeds of larger ptiliids are extraordinarily high and comparable to those of staphylinids that have bodies 3 times as long. This is one of the few known exceptions to the “Great Flight Diagram,” according to which the flight speed of smaller organisms is generally lower than that of larger ones. The horizontal acceleration values recorded in Ptiliidae are almost twice as high as even in Silphidae, which are more than an order of magnitude larger. High absolute and record-breaking relative flight characteristics suggest that the unique morphology and kinematics of the ptiliid wings are effective adaptations to flight at low Reynolds numbers. These results are important for understanding the evolution of body size and flight in insects and pose a challenge to designers of miniature biomorphic aircraft.

Funder

Russian Foundation for Basic Research

Russian Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference15 articles.

1. H. Tennekes , The Simple Science of Flight: From Insects to Jumbo Jets, (MIT Press, ed. 4, 2000).

2. The Flight of Very Small Insects

3. The evolution and classification of the flight apparatus of insects;Rohdendorf;Trans. Paleontol. Inst. USSR Acad. Sci.,1949

4. Small Is Beautiful: Features of the Smallest Insects and Limits to Miniaturization

5. Flapping-mode changes and aerodynamic mechanisms in miniature insects;Lyu;Phys. Rev. E,2019

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3