Unraveling the hidden role of a uORF-encoded peptide as a kinase inhibitor of PKCs

Author:

Jayaram Divya RamORCID,Frost SigalORCID,Argov Chanan,Liju Vijayasteltar BelsammaORCID,Anto Nikhil PonnoorORCID,Muraleedharan AmithaORCID,Ben-Ari Assaf,Sinay Rose,Smoly Ilan,Novoplansky Ofra,Isakov NoahORCID,Toiber DebraORCID,Keasar ChenORCID,Elkabets MosheORCID,Yeger-Lotem EstiORCID,Livneh EttaORCID

Abstract

Approximately 40% of human messenger RNAs (mRNAs) contain upstream open reading frames (uORFs) in their 5′ untranslated regions. Some of these uORF sequences, thought to attenuate scanning ribosomes or lead to mRNA degradation, were recently shown to be translated, although the function of the encoded peptides remains unknown. Here, we show a uORF-encoded peptide that exhibits kinase inhibitory functions. This uORF, upstream of the protein kinase C-eta (PKC-η) main ORF, encodes a peptide (uPEP2) containing the typical PKC pseudosubstrate motif present in all PKCs that autoinhibits their kinase activity. We show that uPEP2 directly binds to and selectively inhibits the catalytic activity of novel PKCs but not of classical or atypical PKCs. The endogenous deletion of uORF2 or its overexpression in MCF-7 cells revealed that the endogenously translated uPEP2 reduces the protein levels of PKC-η and other novel PKCs and restricts cell proliferation. Functionally, treatment of breast cancer cells with uPEP2 diminished cell survival and their migration and synergized with chemotherapy by interfering with the response to DNA damage. Furthermore, in a xenograft of MDA-MB-231 breast cancer tumor in mice models, uPEP2 suppressed tumor progression, invasion, and metastasis. Tumor histology showed reduced proliferation, enhanced cell death, and lower protein expression levels of novel PKCs along with diminished phosphorylation of PKC substrates. Hence, our study demonstrates that uORFs may encode biologically active peptides beyond their role as translation regulators of their downstream ORFs. Together, we point to a unique function of a uORF-encoded peptide as a kinase inhibitor, pertinent to cancer therapy.

Funder

Israel Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3