Endoplasmic reticulum membrane receptors of the GET pathway are conserved throughout eukaryotes

Author:

Asseck Lisa Yasmin,Mehlhorn Dietmar GeraldORCID,Monroy Jhon RiveraORCID,Ricardi Martiniano MariaORCID,Breuninger Holger,Wallmeroth Niklas,Berendzen Kenneth WayneORCID,Nowrousian MinouORCID,Xing Shuping,Schwappach BlancheORCID,Bayer MartinORCID,Grefen ChristopherORCID

Abstract

Type II tail-anchored (TA) membrane proteins are involved in diverse cellular processes, including protein translocation, vesicle trafficking, and apoptosis. They are characterized by a single C-terminal transmembrane domain that mediates posttranslational targeting and insertion into the endoplasmic reticulum (ER) via the Guided-Entry of TA proteins (GET) pathway. The GET system was originally described in mammals and yeast but was recently shown to be partially conserved in other eukaryotes, such as higher plants. A newly synthesized TA protein is shielded from the cytosol by a pretargeting complex and an ATPase that delivers the protein to the ER, where membrane receptors (Get1/WRB and Get2/CAML) facilitate insertion. In the model plantArabidopsis thaliana, most components of the pathway were identified throughin silicosequence comparison, however, a functional homolog of the coreceptor Get2/CAML remained elusive. We performed immunoprecipitation-mass spectrometry analysis to detect in vivo interactors ofAtGET1 and identified a membrane protein of unknown function with low sequence homology but high structural homology to both yeast Get2 and mammalian CAML. The protein localizes to the ER membrane, coexpresses withAtGET1, and binds toArabidopsisGET pathway components. While loss-of-function lines phenocopy the stunted root hair phenotype of otherAtgetlines, its heterologous expression together with the coreceptorAtGET1 rescues growth defects ofΔget1get2yeast. Ectopic expression of the cytosolic, positively charged N terminus is sufficient to block TA protein insertion in vitro. Our results collectively confirm that we have identified a plant-specific GET2 inArabidopsis, and its sequence allows the analysis of cross-kingdom pathway conservation.

Funder

Carl-Zeiss-Stiftung

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3