A distinct dimer configuration of a diatom Get3 forming a tetrameric complex with its tail-anchored membrane cargo

Author:

Chen Chi-Chih,Huang Yu-Ru,Chan Yuen Ting,Lin Hung-Yun,Lin Han-Jia,Hsiao Chwan-Deng,Ko Tzu-Ping,Lin Tai-Wen,Lan Ya-Hsuan,Lin Hsuan-Ya,Chang Hsin-YangORCID

Abstract

Abstract Background Most tail-anchored (TA) membrane proteins are delivered to the endoplasmic reticulum through a conserved posttranslational pathway. Although core mechanisms underlying the targeting and insertion of TA proteins are well established in eukaryotes, their role in mediating TA protein biogenesis in plants remains unclear. We reported the crystal structures of algal arsenite transporter 1 (ArsA1), which possesses an approximately 80-kDa monomeric architecture and carries chloroplast-localized TA proteins. However, the mechanistic basis of ArsA2, a Get3 (guided entry of TA proteins 3) homolog in plants, for TA recognition remains unknown. Results Here, for the first time, we present the crystal structures of the diatom Pt-Get3a that forms a distinct ellipsoid-shaped tetramer in the open (nucleotide-bound) state through crystal packing. Pulldown assay results revealed that only tetrameric Pt-Get3a can bind to TA proteins. The lack of the conserved zinc-coordination CXXC motif in Pt-Get3a potentially leads to the spontaneous formation of a distinct parallelogram-shaped dimeric conformation in solution, suggesting a new dimer state for subsequent tetramerization upon TA targeting. Pt-Get3a nonspecifically binds to different subsets of TA substrates due to the lower hydrophobicity of its α-helical subdomain, which is implicated in TA recognition. Conclusions Our study provides new insights into the mechanisms underlying TA protein shielding by tetrameric Get3 during targeting to the diatom’s cell membrane.

Funder

National Science and Technology Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3