HARC as an open-shell strategy to bypass oxidative addition in Ullmann–Goldberg couplings

Author:

Lavagnino Marissa N.ORCID,Liang Tao,MacMillan David W. C.

Abstract

The copper-catalyzed arylation of unsaturated nitrogen heterocycles, known as the Ullmann–Goldberg coupling, is a valuable transformation for medicinal chemists, providing a modular disconnection for the rapid diversification of heteroaromatic cores. The utility of the coupling, however, has established limitations arising from a high-barrier copper oxidative addition step, which often necessitates the use of electron-rich ligands, elevated temperatures, and/or activated aryl electrophiles. Herein, we present an alternative aryl halide activation strategy, in which the critical oxidative addition (OA) mechanism has been replaced by a halogen abstraction–radical capture (HARC) sequence that allows the generation of the same Cu(III)-aryl intermediate albeit via a photoredox pathway. This alternative mechanistic paradigm decouples the bond-breaking and bond-forming steps of the catalytic cycle to enable the use of many previously inert aryl bromides. Overall, this mechanism allows access to both traditional C–N adducts at room temperature as well as a large range of previously inaccessible Ullmann–Goldberg coupling products including sterically demandingortho-substituted heteroarenes.

Funder

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3