Novel function ofN-acetyltransferase for microtubule stability and JNK signaling inDrosophilaorgan development

Author:

Mok Jung-WanORCID,Choi Kwang-Wook

Abstract

Regulation of microtubule stability is crucial for the maintenance of cell structure and function. While the acetylation of α-tubulin lysine 40 by acetylase has been implicated in the regulation of microtubule stability, the in vivo functions of N-terminal acetyltransferases (NATs) involved in the acetylation of N-terminal amino acids are not well known. Here, we identify an N-terminal acetyltransferase, Mnat9, that regulates cell signaling and microtubule stability inDrosophila. Loss of Mnat9 causes severe developmental defects in multiple tissues. In the wing imaginal disc,Mnat9 RNAileads to the ectopic activation of c-Jun N-terminal kinase (JNK) signaling and apoptotic cell death. These defects are suppressed by reducing the level of JNK signaling. Overexpression of Mnat9 can also inhibit JNK signaling. Mnat9 colocalizes with mitotic spindles, and its loss results in various spindle defects during mitosis in the syncytial embryo. Furthermore, overexpression of Mnat9 enhances microtubule stability. Mnat9 is physically associated with microtubules and shows a catalytic activity in acetylating N-terminal peptides of α- and β-tubulin in vitro. Cell death and tissue loss in Mnat9-depleted wing discs are restored by reducing the severing protein Spastin, suggesting that Mnat9 protects microtubules from its severing activity. Remarkably, Mnat9 mutated in the acetyl-CoA binding site is as functional as its wild-type form. We also find that human NAT9 can rescueMnat9 RNAiphenotypes in flies, indicating their functional conservation. Taken together, we propose that Mnat9 is required for microtubule stability and regulation of JNK signaling to promote cell survival in developingDrosophilaorgans.

Funder

National Research Foundation of Korea

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3