Structure and assembly of the diiron cofactor in the heme-oxygenase–like domain of theN-nitrosourea–producing enzyme SznF

Author:

McBride Molly J.ORCID,Pope Sarah R.ORCID,Hu KaiORCID,Okafor C. Denise,Balskus Emily P.,Bollinger J. Martin,Boal Amie K.

Abstract

In biosynthesis of the pancreatic cancer drug streptozotocin, the tridomain nonheme-iron oxygenase SznF hydroxylatesNδandNω′ ofNω-methyl-l-arginine before oxidatively rearranging the triply modified guanidine to theN-methyl-N-nitrosourea pharmacophore. A previously published structure visualized the monoiron cofactor in the enzyme’s C-terminal cupin domain, which promotes the final rearrangement, but exhibited disorder and minimal metal occupancy in the site of the proposed diiron cofactor in theN-hydroxylating heme-oxygenase–like (HO-like) central domain. We leveraged our recent observation that theN-oxygenating µ-peroxodiiron(III/III) intermediate can form in the HO-like domain after the apo protein self-assembles its diiron(II/II) cofactor to solve structures of SznF with both of its iron cofactors bound. These structures of a biochemically validated member of the emerging heme-oxygenase–like diiron oxidase and oxygenase (HDO) superfamily with intact diiron cofactor reveal both the large-scale conformational change required to assemble the O2-reactive Fe2(II/II) complex and the structural basis for cofactor instability—a trait shared by the other validated HDOs. During cofactor (dis)assembly, a ligand-harboring core helix dynamically (un)folds. The diiron cofactor also coordinates an unanticipated Glu ligand contributed by an auxiliary helix implicated in substrate binding by docking and molecular dynamics simulations. The additional carboxylate ligand is conserved in anotherN-oxygenating HDO but not in two HDOs that cleave carbon–hydrogen and carbon–carbon bonds to install olefins. Among ∼9,600 sequences identified bioinformatically as members of the emerging HDO superfamily, ∼25% conserve this additional carboxylate residue and are thus tentatively assigned asN-oxygenases.

Funder

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3