High energy density and extremely stable supercapacitors based on carbon aerogels with 100% capacitance retention up to 65,000 cycles

Author:

Ma Yu,Chen DingORCID,Fang ZhiORCID,Zheng Yapeng,Li Weijun,Xu Shang,Lu Xianlu,Shao Gang,Liu Qiao,Yang WeiyouORCID

Abstract

In terms of ideal future energy storage systems, besides the always-pursued energy/power characteristics, long-term stability is crucial for their practical application. Here, we report a facile and sustainable strategy for the scalable fabrication of carbon aerogels with three-dimensional interconnected nanofiber networks and rationally designed hierarchical porous structures, which are based on the carbonization of bacterial cellulose assisted by the soft template of Zn-1,3,5-benzenetricarboxylic acid. As binder-free electrodes, they deliver a fundamentally enhanced specific capacitance of 352 F ⋅ g–1 at 1 A ⋅ g–1 in a wide potential window (1.2 V, 6 M KOH) in comparison with those of bacterial cellulose–derived carbons (178 F ⋅ g–1) and most activated carbons (usually lower than 250 F ⋅ g–1). The as-assembled supercapacitors exhibit an ultrahigh capacitance of 297 F ⋅ g−1 at 1 A ⋅ g−1, remarkable energy density (14.83 Wh ⋅ kg−1 at 0.60 kW ⋅ kg−1), and extremely high stability, with 100% capacitance retention for up to 65,000 cycles at 6 A ⋅ g−1, representing their superior energy storage performance when compared with that of state-of-the-art supercapacitors of commercial activated carbons and biomass-derived analogs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Natural Science Foundation of Ningbo

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3