Universal adaptability: Target-independent inference that competes with propensity scoring

Author:

Kim Michael P.12,Kern Christoph3ORCID,Goldwasser Shafi14,Kreuter Frauke56ORCID,Reingold Omer7

Affiliation:

1. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720

2. Miller Institute for Basic Research in Science, Berkeley, CA 94720

3. School of Social Sciences, University of Mannheim, 68159 Mannheim, Germany

4. Simons Institute for the Theory of Computation, Berkeley, CA 94720

5. Joint Program in Survey Methodology, University of Maryland, College Park, MD 20742

6. Department of Statistics, Ludwig-Maximilians-Universität München, 80539 München, Germany

7. Department of Computer Science, Stanford University, Stanford, CA 94305

Abstract

Significance We revisit the problem of ensuring statistically valid inferences across diverse target populations from a single source of training data. Our approach builds a surprising technical connection between the inference problem and a technique developed for algorithmic fairness, called “multicalibration.” We derive a correspondence between the fairness goal, to protect subpopulations from miscalibrated predictions, and the statistical goal, to ensure unbiased estimates on target populations. We derive a single-source estimator that provides inferences in any downstream target population, whose performance is comparable to the popular target-specific approach of propensity score reweighting. Our approach can extend the benefits of evidence-based decision-making to communities that do not have the resources to collect high-quality data on their own.

Funder

National Science Foundation

Deutsche Forschungsgemeinschaft

Simons Foundation

Alfred P. Sloan Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference30 articles.

1. Deep policy learning: Opportunities and challenges from the evidence act;Potok N.;Harv. Data Sci. Rev.,2019

2. High-Level Panel of Eminent Persons on the Post-2015 Development Agenda “A new global partnership: Eradicate poverty and transform economies through sustainable development” (Tech. Rep. United Nations 2013).

3. Estimating causal effects of treatments in randomized and nonrandomized studies.

4. Mostly Harmless Econometrics

5. K. Zhou Z. Liu Y. Qiao T. Xiang C. C. Loy Domain generalization in vision: A survey. arXiv [Preprint] (2021). https://arxiv.org/abs/2103.02503v4 (Accessed 1 August 2021).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3