Integrating topic modeling and word embedding to characterize violent deaths

Author:

Arseniev-Koehler Alina12ORCID,Cochran Susan D.234ORCID,Mays Vickie M.256,Chang Kai-Wei27,Foster Jacob G.12

Affiliation:

1. Department of Sociology, University of California, Los Angeles, CA 90095

2. Bridging Research Innovation, Training and Education for Science, Research & Policy Center, University of California, Los Angeles, CA 90095

3. Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095

4. Department of Statistics, University of California, Los Angeles, CA 90095

5. Department of Psychology, University of California, Los Angeles, CA 90095

6. Department of Health Policy and Management, Fielding School of Public Health, University of California, Los Angeles, CA 90095

7. Department of Computer Science, University of California, Los Angeles, CA 90095

Abstract

Significance We introduce an approach to identify latent topics in large-scale text data. Our approach integrates two prominent methods of computational text analysis: topic modeling and word embedding. We apply our approach to written narratives of violent death (e.g., suicides and homicides) in the National Violent Death Reporting System (NVDRS). Many of our topics reveal aspects of violent death not captured in existing classification schemes. We also extract gender bias in the topics themselves (e.g., a topic about long guns is particularly masculine). Our findings suggest new lines of research that could contribute to reducing suicides or homicides. Our methods are broadly applicable to text data and can unlock similar information in other administrative databases.

Funder

National Institute of Minority Health and Health Disparities

HHS | NIH | National Institute of Mental Health

National Science Foundation Graduate Research Fellowship Program

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference29 articles.

1. Advances in natural language processing

2. Probabilistic topic models

3. T. Mikolov K. Chen G. Corrado J. Dean Efficient estimation of word representations in vector space. arXiv [Preprint] (2013). https://arxiv.org/abs/1301.3781 (Accessed 1 September 2021).

4. Word embeddings quantify 100 years of gender and ethnic stereotypes

5. T. Bolukbasi, K. W. Chang, J. Zou, V. Saligrama, A. Kalai, “Man is to computer programmer as woman is to homemaker? Debiasing word embeddings” in Proceedings of the 30th International Conference on Neural Information Processing Systems, D. Lee, U. von Luxburg, R. Garnett, M. Sugiyama, I. Guyon, Eds. (Curran Associates Inc., Red Hook, NY, 2016), pp. 4356–4364.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3